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Abstract. We refute a recent claim in the literature [Czech. J. Phys. 56, 1191 (2006)] of a “new” quantum
deformation of GL(2).

PACS. 02.20.Uw Quantum groups – 02.10.Hh Rings and algebras – 02.30.Ik Integrable systems

Until the year 2000 it was not clear how many dis-
tinct quantum group deformations are admissible for
the group GL(2) and the supergroup GL(1|1). For
the group GL(2) there were the well-known standard
GLpq(2) [1] and nonstandard (Jordanian) GLgh(2) [2] two-
parameter deformations. (The dual quantum algebras of
GLpq and GLgh were found in [3] and [4], respectively.)
For the supergroup GL(1|1) there were the standard
GLpq(1|1) [5–7] and the hybrid (standard-nonstandard)
GLqh(1|1) [8] two-parameter deformations.

Then, in the year 2000 in [9] it was shown that the
list of these four deformations is exhaustive (refuting a
long standing claim of [10] (supported also in [11,12])
for the existence of a hybrid (standard-nonstandard) two-
parameter deformation of GL(2)). In particular, it was
shown that the above four deformations match the dis-
tinct triangular 4 × 4 R-matrices from the classification
of [13] which are deformations of the trivial R-matrix (cor-
responding to undeformed GL(2))1.

At the end of the Introduction of [9] one can read the
following:
“Instead of briefly stating the equivalence of the hybrid
(standard-nonstandard) of [10] with the standard GLq(2),
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we have chosen to present our elementary analysis ex-
plicitly and in some detail. We consider this worthwhile
for dissipating some confusions. Several authors have pre-
sented attractive looking hybrid deformations without
noticing disguised equivalences. We ourselves devoted time
and effort to their study before reducing them to usual de-
formations. We hope that our analysis will create a more
acute awareness of traps in this domain”.

In spite of this there still appear statements about
“new” deformations of GL(2). In particular, in the Con-
clusions of the paper [14] we read:
“Thus, we have a new quantization of GL(2) that is nei-
ther a twist deformation nor a quasitriangular one.”

Unfortunately, the authors of [14] have not noticed
that their “new” quantization of GL(2) is actually a par-
tial case of the two-parameter nonstandard (Jordanian)
GLgh(2) deformation [2].

It is easy to demonstrate this explicitly. First we repeat
the relations for the four generators a, b, c, d, of deformed
GL(2) from the paper [14]:
The co-product is standard:

∆(a) = a⊗ a + b⊗ c

∆(b) = a⊗ b + b⊗ d

∆(c) = c⊗ a + d⊗ c

∆(d) = c⊗ b + d⊗ d (1)



136 The European Physical Journal B

while the algebra relations given in (10) of [14] are:

[a, b] = b2, [a, c] = 0,

[b, c] = −db, [b, d] = 0,

[a, d] = db, [c, d] = d2 − ad + cb. (2)

On the other hand the two-parameter nonstandard (Jor-
danian) GLgh(2) deformation [2] is given as follows. The
co-product is the standard one given above in (1), while
the algebra relations are (g, h ∈ C):

[d, c] = hc2, [d, b] = g(ad− bc + hac− d2),

[b, c] = gdc + hac− ghc2, [a, c] = gc2,

[a, d] = gdc−hac, [a, b] = h(da− bc+ gdc−a2). (3)

It is easy to notice that (2) is a special case of (3) obtained
for g = 0, h = 1.

To show this, as a first step, we set the latter values in
(3) to obtain:

[d, c] = c2, [d, b] = 0,

[b, c] = ac, [a, c] = 0,

[a, d] = −ac, [a, b] = da− bc− a2. (4)

Now we note that under the exchange:

a←→ d, b←→ c (5)

the co-product (1) remains unchanged, while (4) becomes:

[a, b] = b2, [a, c] = 0,

[c, b] = db, [d, b] = 0,

[d, a] = −db, [d, c] = ad− cb− d2. (6)

Clearly, (6) coincides with (2).

Thus, as anticipated there is no new deformation of
GL(2) in [14].
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